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Abstract 
 

Accurate life prediction is critical to successful use of ceramic matrix composites 
(CMCs).  The tools to accomplish this are immature and not oriented toward the behavior 
of carbon fiber reinforced silicon carbide (C/SiC), the primary system of interest for 
many reusable and single mission launch vehicle propulsion and airframe applications.  
This paper describes an approach and progress made to satisfy the need to develop an 
integrated life prediction system that addresses mechanical durability and environmental 
degradation of C/SiC. 
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Introduction 
 

The complex and demanding environments of advanced airframe and propulsion 
systems for future space transportation vehicles are illustrated in Figure 1.  The 
application of ceramic matrix composites (CMC) to these systems may provide  
benefits in terms of life, performance, temperature margin, and weight savings.  For 
implementation of ceramics reliable performance and accurate life prediction is 
absolutely essential.  Current state-of-the art CMC life prediction methodologies 
embodied in NASALife1 and similar codes are based on empirical formulations.  In 
general, these models have to be calibrated using experimental data.  A shortcoming of 
these approaches is that changes in fiber architecture, constituent volume ratios, or other 
variables make the material system completely “new”.  This requires that the empirical 
relations be recalibrated by extensive additional experimental testing.  Much of this 
additional cost and time can be reduced if the analytical models are physics based and 
placed in a micromechanics framework.  Once calibrated for a specific CMC system, the 
predictive capability of the model can then be utilized without additional calibration. 

 
NASALife was developed under the Enabling Propulsion Materials Project of the 

High Speed Research Program.  Development of this code and similar codes has focused 
on material systems that are markedly different from the carbon fiber reinforced silicon 
carbide (C/SiC) composite that is the focus of this study.  These codes are lacking 
because they are not physics-based for accurate prediction of damage due to fatigue and 
fracture loading conditions.  They also do not account for environmental degradation 
effects due to water vapor attack of silica scales and carbon oxidation that are expected to 
be major factors in the application of C/SiC to space propulsion systems.  Thus, current 
methods, and the underlying empirical equations upon which they are based, are 
inadequate for predicting the reusable life of C/SiC space propulsion hardware. 

 
The approach outlined in this paper is designed to resolve these shortcomings.  Our 

objective is to provide physics based models for the complex interactive mechanical and 
environmental degradation mechanisms that control C/SiC life, to address mechanical 
property measurement and prediction from a statistical point of view, and to provide the 
results as inputs to a parallel micro-mechanics modeling task.   

 

Approach and Status 
 

The overall effort focuses on providing a robust life prediction methodology that will 
allow confident determination of the reusable life capability of C/SiC space propulsion 
hardware.  This will be accomplished by updating NASALife to capture the damage and 
degradation mechanisms associated with static and cyclic thermal and mechanical 
loading of C/SiC components in a high temperature, high pressure, steam containing 
environment.  Standard C/SiC (1K T–300 fibers, plain weave, pyrolytic carbon interface, 
SiC matrix formed by chemical vapor infiltration, and seal coat formed by chemical 
vapor deposition) from GE Power Systems Composites, LLC was chosen as the baseline 
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material for this study.  Enhanced C/SiC, with and without a life enhancing coating, is 
also being tested. 

 

Life Model 

Physics based, probabilistic lifing models are being pursued. The models will address 
issues inherently related to composite materials – stochastic characterization of strength, 
life, and orthotropic material response.  Stress rupture tests are being carried out, and 
fatigue testing will be carried out, in appropriate environments in support of model 
calibration and validation.  The lifing models developed will be implemented in 
NASALife.  A parallel effort for a micro-mechanics (fiber /coating /matrix) based 
approach to predict stiffness, strength, and life at the coupon level is also being  
pursued.2, 3, 4 These on-going tasks have led to a library of computer codes developed 
specifically for the design of CMCs, and they will be adapted to C/SiC to provide state  
of the art design tools. 

Lifing schemes, such as those contained within NASALife and currently employed 
for CMC, are adapted from models originally developed for design with metals.  These 
traditional models are comprised of modified Miner’s rules, rain-flow calculations, 
empirical knockdown factors, safety factors, etc.  Under this task, a probabilistic residual 
strength model is being pursued.  Residual strength is taken as the damage metric for 
stress rupture and mechanical fatigue life models.  Initial static strength, intermediate 
residual strength, and time or cycles to failure are all treated as random variables with 
similar distributions (see Figure 2).  In addition, efforts are underway to develop   
physics-based models at the fiber/matrix level for life determination, and environmental 
effects. In the meantime, the residual strength model utilizes empirical relationships 
where needed, but is open to modification and incorporation of new models, such as 
micro-mechanical models and models for environmental degradation, as they become 
available. Some of the initial results will be shown in the section on Mechanical Testing.   
 

Oxidation 

Oxidation is one key aspect of the environmental attack problem.  It arises because 
C/SiC composites have a microcracked SiC matrix in the as-produced condition.  As a 
result, the pyrolytic carbon coating on the fibers and the carbon fibers themselves are 
subject to oxidation attack when the cracks are open.5, 6, 7 The details of this fiber attack 
are illustrated in Figure 3.  This degradation mechanism occurs at temperatures below  
the composite fabrication temperature under zero stress conditions, and at all elevated 
temperatures sufficient for oxidation of the fibers (>400 oC) when stress sufficient to 
open matrix cracks is applied.  Figure 4 illustrates the role of thermal expansion 
mismatch between the SiC matrix and the C fibers, and of applied stress on crack 
opening.  Since oxidizing conditions are expected to be present in the service 
environment of most C/SiC components, prediction of oxidation attack is a key 
ingredient of the life prediction model.  A more thorough understanding of the effects  
of environment, temperature, and stress on the degradation of carbon fibers is being 
developed so that material limitations can be better identified and methods of improving 
oxidation resistance can be addressed.  The development of a physics and experimentally 
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based fiber oxidation model is being pursued as depicted in Figure 5.  It incorporates such 
variables as reaction rate, diffusion coefficient, temperature, and oxygen partial pressure.  
It tracks the recession of an array of fibers in a cracked matrix so that the oxidation 
kinetics involved in carbon fiber degradation can be studied.  Oxidation studies, stress 
rupture tests, and microscopy are being conducted to aid in the development of the 
model.  During the past year experiments were carried out to determine the oxidation 
activation energies for T–300 carbon fiber and pyrolytic carbon interface materials as 
illustrated in Figures 6 and 7, respectively.  The two regimes for T–300 oxidation agree 
with other results from literature in which two regimes were observed in the temperature 
range of 500-900 oC8 and one was observed at temperatures from 600-950 oC.9 

 
 

Mechanical Testing  
 
The test plan for tensile, stress-rupture, and fatigue testing was formulated to satisfy 

several requirements: (1) calibration and verification of the probabilistic residual  
strength (PRS) model, (2) assessment of usable service life for various conditions (i.e. 
temperature, stress, and environment) for C/SiC, and (3) determination of the effect of 
alternative fiber architecture on material behavior and model capability.  One study 
conducted under this effort examined the effect of specimen width on stress rupture life. 
Data are shown in Figure 8 for tests at 800 and 1200 oC.  The fact that life increases 
dramatically with increasing specimen width is encouraging and indicates that component 
life will likely be significantly longer than predicted by test data generated on the narrow 
specimens.  It also indicates that it is important to vary gage width as part of C/SiC 
material characterization. Finally, the gage width results illustrate the shortcomings of  
the seal coating process as is evident from the microstructures in Figure 9.  Attack at 
machined and seal-coated edges and corners is much more severe than at normally 
processed surfaces.  This is illustrated quantitatively in Figure 10 for the 1200 oC data.  
The relation is nonlinear.  The rate of attack at edges is about three times the rate on large 
surfaces.  However, since there is far more surface area than edge area, the highest 
volume of carbon fiber consumption occurs from the large flat surfaces.  In a large panel 
edge, damage would become insignificant from a structural standpoint as illustrated in 
Figure 11.  However, performance integrity and sealing between panels would be 
compromised. 

 
The performance of standard C/SiC and enhanced C/SiC in air is shown in Figure 12 

as a function of temperature.  The enhanced C/SiC has a matrix that is modified with B4C 
particulates to allow low temperature glass formation and crack sealing.  Enhanced C/SiC 
outperforms the standard C/SiC at 800 and 1200 oC.  Tests at other temperatures are 
planned. 

 
Lives of standard C/SiC in air are too short for model development data.  Thus an 

artificial condition (1000 ppm O2 in argon) was selected to give a more readily measured 
life distribution.  At this reduced oxygen partial pressure condition, calibration tests were 
run at 800 and 1200 oC.   To verify the model a series of stress-rupture tests were run at  
30 ksi.  Results are plotted along with model predictions of probability of failure in 
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Figure 13.  At the critical low probability of failure tail of the distribution, the predictions 
are in good agreement with the data at both temperatures.  The situation with regard to 
residual strength prediction is not as good, as shown in Figures 14.  The measured 
median residual strength is about 35 ksi after 15 hours of stress rupture exposure at 30 ksi 
whereas the model predicts a much more gradual strength reduction with the median 
strength not far below the as-received strength.  The situation is similar after 7.5 hours.  
Figure 15 is a plot of residual strength versus time to failure for interrupted tests run at  
30 ksi and for life tests run at the indicated stress equal to the residual strength.  From this 
curve a number of degradation models were formulated and are in the process of being 
evaluated.  Also, testing at 800 oC is underway to allow further development of the 
residual strength part of the model. 

 
Stress-rupture tests to determine the effect of moisture on C/SiC performance were 

carried out in the apparatus partially depicted in Figure 16.  Results at 600 and 1200 oC 
are presented in Figures 17 and 18, respectively.  At 600 oC, 20% steam in argon is 
benign in comparison to air.  At 1200 oC, steam is about as aggressive as air.  Vacuum 
run out data are shown for comparison.  These results can be understood from the fiber 
oxidation data shown in Figure 19.  At 1200 oC, fiber oxidation in air and in 20% H2O  
in Ar is about the same.  At 600 oC, oxidation of T–300 still occurs rapidly in air, but in 
20% H2O in Ar the reaction kinetics limit the reaction rate to near zero.   

       
Water Vapor Attack 

 
The reaction of silica scales with water vapor is the most straightforward aspect of the 

environmental attack problem to characterize and model because stress state interactions 
are insignificant.  Current state of the art consists of both experimental data and a model 
for SiC and Si3N4 recession due to formation of volatile silicon hydroxides in combustion 
conditions typical of aircraft engine.10 The model predicts material recession rates as a 
function of water vapor partial pressure, total pressure, gas velocity, and material 
temperature.  In this task, the model is being extended to pressures, gas chemistries, gas 
velocities, and material temperatures typical of the rocket engine environment.  High 
pressure, low velocity tests will be run upstream of a nozzle throat at various O2/H2  
(O/F, oxidizer/fuel) mixture ratios.  Initial experiments were run under less than ideal 
fuel-rich combustion conditions that led to a non-uniform temperature distribution.  
Weight change results indicated that H2O vapor attack is taking place.  Thickness 
measurements at specific locations are shown in Figure 20.  Water vapor attack appears 
to be more aggressive at the higher fuel-rich O/F and temperature location.  Currently the 
combustor and nozzle assembly is being redesigned to achieve more uniform flame 
conditions. 

 
 
 

 



NASA/TM—2003-212493 6 

Concluding Remarks 
 

Life prediction for C/SiC is a complex problem involving many interactive 
mechanisms.  The plan outlined here will analyze mechanisms in isolation as well as  
their interactions, develop mechanistic lifing models, and develop understanding of the 
importance of statistics in C/SiC behavior. 

 
Progress has been made in all aspects of the plan: 
  

• Steam effects: Preliminary tests indicate that we will see an effect consistent with past 
experience.  A test set-up with a more uniform combustion profile will be on line in 
2003.  The kinetics of water vapor reaction with carbon fibers is slow at 600 oC, but 
comparable to air attack at 1200 oC. 

 
• Oxidation model: The activation energies for T–300 and pyrolytic carbon were 

determined.  Crack opening as a function of temperature and stress was calculated.  
Detailed microscopy of oxidized specimens is being carried out to develop the 
oxidation model. 

 
• Mechanical property tests and life model: Initial results are very encouraging except 

for residual strength prediction.  Edge oxidation of seal coated specimens has been 
investigated by testing specimens of varying gage width.  The mitigating effect of 
steam observed in fiber oxidation studies has also been observed in stress rupture 
tests. 

     
Future efforts will include architectural effects, enhanced coatings, biaxial tests, and 

low cycle fatigue.  Modeling will need to account for combined effects.  
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 Figure 1.—Demanding environments push CMC materials limits.
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 Figure 2.—Probabilistic model development for C/SiC.
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 Figure 4.—Crack opening determined by load and thermal strain.
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 Figure 6.—TGA results for uncoated T-300 carbon fiber tow.
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 Figure 8.—Effect of specimen volume on C/SiC stress-rupture life 30 ksi, 1000 ppm O2/Ar.
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Figure 12.—Stress rupture life for C/SiC as a function of temperature
   (all tests conducted in air at 10 ksi stress).
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Figure 14.—Predicted residual strength for C/SiC.
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Figure 16.—Stress-rupture testing of C/SiCin steam/argon environments at ambient pressure.
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 Figure 18.—Effect of environment on stress rupture life of C/SiC at 1200 °C.
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• Average life in 20% steam/80% Ar (5 hrs) is about twice that in
   other steam environments (about 2.5 hrs).

• Tests in vacuum stopped after 100 hrs, prior to specimen failure.

• 600 °C lives longer than 1200 °C, especially in steam (250 versus 5 hrs).
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 Figure 19.—T-300 carbon fiber oxidation kinetics.
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• At 1200 °C, carbon fiber weight loss kinetics in air and steam due to oxidation are
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• At 600 °C in steam, weight loss is negligible, while in air, rapid weight loss occurs.
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Figure 20.—Preliminary tests show recession of thick SiC seal coat
   in O/H combustion rig.
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